Opintojakso

Näytä opetustapahtumat
3621675 Syväoppiminen, 6 op 
Tunniste 3621675  Voimassaolo 01.01.1950 -
Nimi Syväoppiminen  Lyhenne DEL 
Laajuus6 op  Vanhenemisaika  
TyyppiSyventävät opinnot Oppiaine0530 Tietojenkäsittelytiede 
LajiOpintojakso  Tuntimäärä  
Opinto-oikeus   Arvostelu0-5 
Suositeltu suoritusaika 
   
Vastuuyksikkö Tietojenkäsittelytiede (J,K) 

Kuvaus:
Osaamistavoitteet 

Students understand the underlying principles of machine learning and data mining. Students understand the theory of neural networks, Nature-Inspired Computing (NIC) methods, and deep learning algorithms. Students get familiar with the most popular neural networks models (Perceptron, Adaline, multilayer neural networks, SOM, etc.) and their learning algorithms (Widrow-Hoff rule, Back-Propagation (BP) training, Back-propagation Through Time (BTT) training, competitive learning, etc.). Students can apply learning algorithms for adjusting the weights in these neural networks. Students understand the basics of optimization theory and techniques. Students know the most widely applied swarm algorithms (PSO, ACO, DE, etc.). Students are able to use these swarm intelligence methods for solving optimization problems. Students understand the working principles of a few representative reinforcement learning methods (Adaptive Critic Design (ACD), Temporal Difference (TD), etc.). Students master the essential knowledge of deep learning techniques, such as regularization, momentum, batch normalization, and dropout. Students understand the principles, structures, and algorithms of typical deep learning neural networks, e.g., CNN. Students know how to build up deep learning algorithms from scratch. Students know how to choose evaluation metrics, how to preprocess data sets, and how to handle variance and bias in deep learning. Students are able to program deep learning using the TensorFlow platform. Students gain the hand-on experiences in using deep learning techniques to deal with practical problems.

 
Sisältö 

Elementary concepts and challenges of machine learning. Neural networks models (linear neural networks, feedforward neural networks, recurrent neural networks, Self-Organizing Map (SOM), etc.). Meta-heuristics optimization methods (Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Differential Evolution (DE), etc.). Reinforcement learning. Concepts and challenges of deep learning. Deep learning models and techniques (deep neural networks, Convolutional Neural Networks (CNN), etc.). Applications of deep learning in classification, prediction, pattern recognition, etc.

 
Suoritustavat 

Lectures, teaching materials, exercises, and examination.

 
Toteutustavat 

Luennot 32 h, harjoitukset 16 h.

 
Oppimateriaalit 

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2017, A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley & Sons Ltd, 2005, S. Haykin, Neural Networks, A Comprehensive Foundation, Prentice Hall, 2008, lecture slides and notes, selected papers from journals and conference proceedings.

 
Arvosteluperusteet 

Arvostelu: 0-5

 
Edellytykset 

Basic knowledge of linear algebra and probability theory, general MATLAB programming skills

 


Kirjainlyhenne opetustapahtuman nimen edessä tarkoittaa kampusta, jolla opetus tai tentti järjestetään: J = Joensuu, K = Kuopio.

Meneillä oleva ja tuleva opetus
Toiminnot Nimi Tyyppi op Opettaja Aikataulu
Ilmoittautuminen ei alkanut (KUOPIO): Syväoppiminen  Luento- ja harjoituskurssi  Xiaozhi Gao  27.10.20 -05.02.21
Ilmoittautuminen ei alkanut (JOENSUU): Syväoppiminen  Luento- ja harjoituskurssi  Xiaozhi Gao  27.10.20 -05.02.21

Tulevat tentit
Toiminnot Nimi Tyyppi op Opettaja Aikataulu
Ilmoittautuminen ei alkanut (JOENSUU): Syväoppiminen  Yleinen tentti  Xiaozhi Gao 
20.08.20to 12.00-16.00
Ilmoittautuminen ei alkanut (KUOPIO): Syväoppiminen  Yleinen tentti  Xiaozhi Gao 
20.08.20to 12.00-16.00